免费咨询电话:400-100-3233

新闻分类

课程中心

联系我们

咨询电话:18323365835(微信同)

鲁能校区:江北鲁能星城八街区888号(鲁能巴蜀对面)

沙坪坝校区:沙坪坝区沙南街金港大厦3楼(南开中学公交站旁)

大学城南渝校区:沙坪坝区大学城陈家桥桥北一路西泽雅苑(南渝中学正对面)

大学城金科校区:沙坪坝大学城西路金科廊桥天都11号(重庆第一实验中学旁)

南坪校区:南坪惠工路CITY城市广场5楼(珊瑚中学旁 )

南山校区:南岸区南山黄桷垭崇文路第二外国语学校旁

渝北校区:渝北区回兴双湖路木鱼石花园旁(重庆一中寄宿学校对面)

大渡口校区:大渡口九宫庙步行街春光购物广场沃尔玛2楼

石桥铺校区:九龙坡区枫丹路2号附43号华宇名都城3楼(重庆外国语学校对面)

双福校区:江津双福行知路御墅临枫小区32号(双福育才中学正对面)

两江蔡家校区:北碚区蔡家岗镇东原嘉阅湾长平路893号(西大两江实验中学对面)

彩云湖校区:九龙坡区科城路139号附10号(杨家坪中学彩云湖校区旁)

一外华岩校区:九龙坡区华龙大道第一外国语学校华岩校区后门对面

汽博校区:两江新区金童路171号奥园五期商铺2楼

一中双语校区:重庆市渝北区湖霞街1号附5号(一中双语学校大门对面)

茶园校区:巴南区天鹿大道融创欧麓花园都铎庄园1152号附36号(茶园八中斜对面)

渝八校区:渝北区中央公园北路17号附3号(重庆八中大门对面)

谢家湾校区谢家湾正街万象里A区2楼55号附28号2-42

独领风骚华人数学家之----李善兰

您的当前位置: 首 页 >> 新闻中心 >> 优师博文

独领风骚华人数学家之----李善兰

发布日期:2018-01-23 09:52:24 作者: 点击:

 中华民族是一个具有灿烂文化和悠久历史的民族,在灿烂的文化瑰宝中数学在世界也同样具有许多耀眼的光环。中国古代算术的许多研究成果里面就早已孕育了后来西方数学才涉及的思想方法,近代也有不少世界领先的数学研究成果就是以华人数学家命名的。

    【李氏恒等式】数学家李善兰在级数求和方面的研究成果,在国际上被命名为“李氏恒等式”。


    中国清代数学家、天文学家、翻译家和教育家,近代科学的先驱者。原名心兰,字竞芳,号秋纫,别号壬叔,浙江海宁县硖石镇人,生于嘉庆十六年,卒于光绪八年。

    李善兰自幼酷爱数学。十岁时学习《九章算术》。十五岁时读明末徐光启、利玛窦合译的欧几里得《几何原本》前六卷,尽解其意。后来,他到杭州应试,买回元代李冶的《测圆海镜》、清代戴震(1724~1777)的《勾股割圆记》等算书,认真研读;又在嘉兴等地与数学家顾观光(1799~1862)、张文虎(1808~1888)、汪曰桢(1813~1881)以及戴煦、罗士琳(1774~1853)、徐有壬(1800~1860)等人相识,经常在学术上相互切磋。自此数学造诣日臻精深,时有心得,辄复著书,1845年前后就得到并发表了具有解析几何思想和微积分方法的数学研究成果──“尖锥术”。

    1852~1859年,李善兰在上海墨海书馆与英国传教士、汉学家伟烈亚力等人合作翻译出版了《几何原本》后九卷,以及《代数学》、《代微积拾级》、《谈天》、《重学》、《圆锥曲线说》、《植物学》等西方近代科学著作,又译《奈端数理》(即牛顿《自然哲学的数学原理》)四册(未刊),这是解析几何、微积分、哥白尼日心说、牛顿力学、近代植物学传入中国的开端。李善兰的翻译工作是有独创性的,他创译了许多科学名词,如“代数”、“函数”、“方程式”、“微分”、“积分”、“级数”、“植物”、“细胞”等,匠心独运,切贴恰当,不仅在中国流传,而且东渡日本,沿用至今。李善兰为近代科学在中国的传播和发展作出了开创性的贡献。 李善兰“尖锥术”书影

    1860年起,他先后在徐有壬、曾国藩军中作幕僚,与化学家徐寿、数学家华蘅芳等人一起,积极参与洋务运动中的科技学术活动。1867年他在南京出版《则古昔斋算学》,汇集了二十多年来在数学、天文学和弹道学等方面的著作,计有《方圆阐幽》、《弧矢启秘》、《对数探源》、《垛积比类》、《四元解》、《麟德术解》、《椭圆正术解》、《椭圆新术》、《椭圆拾遗》、《火器真诀》、《对数尖锥变法释》、《级数回求》和《天算或问》等13种24卷,共约15万字。

    1868年,李善兰被荐任北京同文馆天文算学总教习,直至1882年他逝世为止,从事数学教育十余年,其间审定了《同文馆算学课艺》、《同文馆珠算金□》等数学教材,培养了一大批数学人才,是中国近代数学教育的鼻祖。

    李善兰生性落拓,潜心科学,淡于利禄。晚年官至三品,授户部正郎、广东司行走、总理各国事务衙门章京等职,但他从来没有离开过同文馆教学岗位,也没有中断过科学研究特别是数学研究工作。他的数学著作,除《则古昔斋算学》外,尚有《考数根法》、《粟布演草》、

    《测圆海镜解》、《九容图表》,而未刊行者,有《造整数勾股级数法》、《开方古义》、《群经算学考》、《代数难题解》等。

    李善兰在数学研究方面的成就,主要有尖锥术、垛积术和素数论三项。  尖锥术理论主要见于《方圆阐幽》、《弧矢启秘》、《对数探源》三种著作,成书年代约为1845年,当时解析

    几何与微积分学尚未传入中国。李善兰创立的“尖锥”概念,是一种处理代数问题的几何模型,他对“尖锥曲线”的描述实质上相当于给出了直线、抛物线、立方抛物线等方程□他创造的“尖锥求积术”。相当于幂函数的定积分公式□和逐项积分法则□他用“分离元数法”独立地得出了二项平方根的幂级数展开式□结合“尖锥求积术”,得到了□的无穷级数表达式□

    各种三角函数和反三角函数的展开式,以及对数函数的展开式□在使用微积分方法处理数学问题方面取得了创造性的成就。垛积术理论主要见于《垛积比类》,写于1859~1867年间,这是有关高阶等差级数的著作。李善兰从研究中国传统的垛积问题入手,获得了一些相当于现代组合数学中的成果。例如,“三角垛有积求高开方廉隅表”和“乘方垛各廉表”实质上就是组合数学中著名的第一种斯特林数和欧拉数。驰名中外的“李善兰恒等式”□自20世纪30年代以来,受到国际数学界的普遍关注和赞赏。可以认为,《垛积比类》是早期组合论的杰作。
    【华氏定理】数学家华罗庚关于完整三角和的研究成果被国际数学界称为“华氏定理”;另外他与数学家王元提出多重积分近似计算的方法被国际上誉为“华—王方法”。


本文网址:http://218.4.132.130:8182/cqqsjy/news/471.html

相关标签:重庆中小学课外辅导

最近浏览:

  • 鲁能规划中心
  • 渝八规划中心
  • 沙坪坝规划中心
  • 南渝规划中心
  • 大学城规划中心
  • 南坪规划中心
  • 南山规划中心
  • 渝北规划中心
  • 大渡口规划中心
  • 双福规划中心
  • 石桥铺规划中心
  • 彩云湖规划中心
  • 华岩规划中心
  • 汽博规划中心
  • 茶园规划中心
  • 一中双语规划中心
  • 两江规划中心

电话: 400-100-3233

e1.jpg

咨询服务热线:400-100-3233

立即咨询
Copyright © http://218.4.132.130:8182/cqqsjy/ 勤思优才教育官网专业从事于重庆高考志愿填报,新高考选科规划 ,家庭教育服务,欢迎来电咨询!
渝ICP备2021002869号-1   Powered by 祥云平台   技术支持: 卓光科技
本站部分内容图片来源于互联网,如有侵权请及时联系管理员删除,谢谢!